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The steady laminar two-dimensional thermocapillary convection in the thin annular two superposed hor-
izontal liquid layers with one free surface, one liquid/liquid interface subjected to a radial temperature
gradient was investigated using asymptotical analysis. The pool is heated from the outer cylindrical wall
and cooled at the inner wall. Bottom and top surfaces are adiabatic. The asymptotic solution is obtained
in the core region in the limit as the aspect ratio, which is defined as the ratio of the lower layer thickness
to the gap width, goes to zero. The numerical experiments are also carried out to compare with the
asymptotic solution of the steady two-dimensional thermocapillary convection. The asymptotic results
indicate that the expressions of velocity and temperature fields in the core region are valid in the limit
of the small aspect ratio.
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1. Introduction

There has been recently an increasing interest in the study of
thermocapillary flows in a two-layer liquid system induced by hor-
izontal temperature gradients, especially in microgravity-related
fluid science and semiconductor crystal growth. In crystal growth,
liquid-encapsulated crystal (LEC) growth is used to minimize evap-
oration of the volatile component from the melt and avoid crystal-
lographic defects and degradation of electronic properties of the
resulting products. The LEC growth process generates thermocap-
illary convective cells in the region of crystallization, which
requires better understanding and controlling. Therefore, it has at-
tracted great attention [1–3].

In the past, most studies about Rayleigh–Bénard convection in
two immiscible liquids have been devoted to vertical heating [4–
9]. Only few contributions were found to deal with a horizontal
temperature gradient. Villers and Platten [10,11] studied experi-
mentally thermal convection in two superposed immiscible fluid
layers in a rectangular cavity with differentially heated end walls,
and measured the horizontal velocity profiles in each layer as a
function of the height. They also developed a simple theoretical
model to calculate the horizontal velocity profile as a function of
the ratio of viscosities, expansion coefficients, and thicknesses of
both layers. Doi and Koster [12] studied theoretically the thermo-
capillary convection under microgravity conditions in two immis-
cible liquid layers with an upper free surface. An analytical solution
was introduced for infinite horizontal layers, and four different
ll rights reserved.
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flow profiles and three ‘‘halt” conditions which prevent the flow
motion in the lower layer were found. Moreover, they carried out
numerical simulations in a two-dimensional cavity in order to ana-
lyze the effect of the vertical walls. Then, Liu et al. [13,14]
performed numerical simulations to investigate the thermogravi-
tational and thermocapillary convection in a cavity containing
two superposed immiscible liquid layers. They discovered that
convective patterns depended on the property ratios of the two
liquid layers and the thickness fractions of the layers, and also
introduced an asymptotic solution for the velocity in the limit of
infinite aspect ratio. Nepomnyashchy et al. [15] investigated
numerically three-dimensional spiral thermocapillary flows of a
two-layer fluid system filling a channel with a rectangular cross
section. Steady and oscillatory thermocapillary motions and
transitions between them were confirmed. Furthermore, Madruga
et al. [16] studied the linear stability of two superposed horizontal
liquid layers bounded by two solid planes and subjected to a
horizontal temperature gradient. Four different flow patterns and
temperature profiles were displayed for the basic state. A linear
perturbative analysis with respect to bidimensional and three-
dimensional perturbations revealed the existence of three kinds
of patterns: wave propagation from the cold to the hot regions,
waves propagating in the opposite direction or still stationary lon-
gitudinal rolls. Nepomnyashchy and Simanovskii [17] investigated
the nonlinear stability of the same two-layer systems as Madruga
et al. Periodic boundary conditions and heat-insulated lateral walls
were considered, and it was concluded that the direction of the
wave propagation depended on the ratio of the layers thicknesses
and the Marangoni number. At the same time, Gupta et al. [18,19]
performed computational studies of thermocapillary convection in
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the absence of gravity within a differentially heated rectangular
cavity containing two immiscible liquid layers. Interface deforma-
tions were considered in the study. They pointed out that the flow
pattern in the encapsulated layer was strongly dependent on both
the thickness and the viscosity of the encapsulant layer, and choos-
ing an encapsulant with a greater sensitivity of interfacial tension
to temperature could almost suppress thermocapillary convection
in the melt. Recently, results of nonlinear simulations of purely
thermocapillary and buoyancy-thermocapillary convective flows
in two-layer systems in different scales under the action of a tem-
perature gradient along the interface have been presented by
Nepomnyashchy and Simanovskii [20]. They also conducted the
nonlinear development of the instability in ultra-thin films caused
by intermolecular forces. Chang et al. [21] investigated the inter-
play between buoyancy-induced and surface tension-driven con-
vection in a two-layer liquid system in a cubic cavity using a
hybrid thermal multiphase lattice Boltzmann method. They argued
that the flow pattern in a two-layer fluid system with density
inversion and heated from the sidewalls is qualitatively and quan-
titatively different from that in a two-layer case for which both the
densities of fluids decrease linearly with temperature.

In theoretical investigations of thermocapillary convection,
asymptotic or analytical solutions are of significance. Many asymp-
totic or analytical solutions play key roles in the early development
of thermocapillary convection. Besides the theoretical meaning,
asymptotic or analytical solutions can also be used to check the accu-
racy, convergence and effectiveness of various numerical computa-
tion methods and to improve their differencing schemes, grid
generation ways and so on. The asymptotic or analytical solutions
are, therefore, very useful even for the newly rapidly developing
computational fluid dynamics. Cormack et al. [22] used asymptotic
analysis to investigate natural convection in a single layer in a shal-
low rectangular cavity due to differentially heated end walls. They
divided the flow into a central core region and two end regions,
and found that in the core region the flow is parallel with fluid trav-
elling from the hot end wall towards the cold end wall in the upper
half of the cavity and fluid travelling in the opposite direction in
the lower half of the cavity. Subsequently, Merker and Leal [23]
examined natural convection in shallow cylindrical annuli. And
Leppinen [24] indicated the disadvantage of the assumptions made
by Merker and Leal and presented a revised version of the asymptotic
analysis for natural convection in shallow cylindrical annuli. Sen and
Davis [25] used the similar method to investigate thermocapillary
convection in a single layer in a rectangular cavity with the free sur-
face. Recently, we have reported an asymptotic solution of thermo-
capillary convection in a thin annular pool of silicon melt [26]. The
purpose of this paper is to use asymptotic analysis to examine ther-
mocapillary convection in thin annular two superposed horizontal
liquid layers subjected to a radial temperature gradient.

2. Mathematical model

We analyze thermocapillary convection of the two immiscible
liquid layers in a thin annular pool as shown schematically in
Fig. 1. The thicknesses of the lower layer and the upper one are
Fig. 1. Physic
h1 and h2, respectively. The ratio of thickness is defined by
h� ¼ h2=h1. The radius of the inner cylinder is ri; and the radius
of the outer cylinder is ro ¼ ri þ l. The pool has a free upper surface
and solid bottom. The aspect ratio of pool is e ¼ h1=l. For the thin
pools, e! 0, a measure of curvature in the annular gap is given
by C ¼ ri=l. A third geometric parameter of the pool is d ¼ ri=h1

which is related to e and C by C ¼ ed.
The inner and outer cylinders maintain at constant tempera-

tures Tc and Th ðTh > TcÞ, respectively. The horizontal temperature
gradient varies in the radial direction. The thermocapillary convec-
tion is generated by the surface tension gradient on the top free
surface. The following assumptions are introduced in our model:
(1) The two layers are incompressible Newtonian fluids and a
constant property assumption is applicable except for the surface
tension. (2) The velocity is small and the flow is the two-dimen-
sional steady laminar. (3) Both the free surface and the interface
are flat and nondeformable [11]. (4) On the top free surface and
interface, the thermocapillary force is taken into account. At other
solid–liquid boundaries, the no-slip condition is applied. (5) Both
bottom and top boundaries are assumed to be adiabatic.

With the above assumptions, the steady-state governing equa-
tions in cylindrical coordinate are expressed as follows:
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where the subscript i ¼ 1; 2 refers to the lower layer and the upper
one, u and v are the radial and axial velocities, r and z are the cylin-
drical coordinates, respectively. q is the density, p is the pressure, m
is the kinematic viscosity, and a is the thermal diffusivity.

The boundary conditions are:

u1 ¼ v1 ¼ 0;
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¼ 0 at z ¼ �h1; ð5Þ
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ui ¼ v i ¼ 0; T ¼ Th at r ¼ ro; ð9Þ
al model.
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where cT;1 is the interface tension temperature coefficient between
liquid 1 and liquid 2, cT;2 is surface tension temperature coefficient
of liquid 2, k is the thermal conductivity, l is the dynamic viscosity.

Eqs. (1)–(4) are nondimensionalized using

R ¼ r
h1
; Z ¼ z

h1
; h ¼ T � Tc

Th � Tc
; P ¼ ph2

1

q1m2
1

and

ðU;VÞ ¼ ðu;vÞ h1

em1
;

where h is the nondimensional temperature. With the introduction
of the axisymmetric stream function w, and vorticity x, defined by
the relations
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The governing equations can be reduced to
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The nondimensional boundary conditions are:
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In the above, Pr is the Prandtl number defined by Pr ¼ m1=a1, Re
is the thermocapillary Reynolds number defined by
Re ¼ cT;1lðTh � TcÞ=ðm1l1Þ. l�; c�T and k� are the ratios of dynamic
viscosity, surface tension temperature coefficient and thermal con-
ductivity of both liquids: l� ¼ l2=l1; c�T ¼ cT ; 2cT ; 1; k� ¼ k2=k1.
The strength of thermocapillary convection is also characterized
by the Marangoni number, Ma ¼ cT;1lðTh � TcÞ=ðl1a1Þ. The Marang-
oni numbers defined above may be expressed as the product of the
Prandtl number and a thermocapillary Reynolds number, i.e.
Ma ¼ RePr.

The solutions of Eqs. (11)–(13) subjected to boundary condi-
tions (14)–(18) will be obtained in the asymptotic limit as e! 0
with both Pr and Re fixed. In this model, C is of O(1). Therefore,
the radial coordinate R is of Oð1=eÞ throughout the entire annular
pool. It is convenient to make the transformation R ¼ dþ X, so that
1=R ¼ 1=ðdþ XÞ ¼ e=ðCþ eXÞ with X varying from X ¼ 0 at the in-
ner cylinder to X ¼ 1=e at the outer cylinder. The transformed
equations become
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3. Core region solutions

In the core region, the radial changes occur over distances of
Oð1=eÞ, which suggests the introduction of a core variablebX ¼ eX. If h and x are denoted by ĥ and x̂, respectively, and the
rescaling ŵ ¼ ew has been used to ensure a balance at leading order
in the stream function equation in the core, the governing equa-
tions become
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@ĥi

@bX
 !

¼ ai

a1

@2ĥi
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The nondimensional boundary conditions are
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@Z
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A solution to these equations is sought out using a regular
asymptotic expansion of the form
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According to the boundary conditions, there are
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; ĥ11 ¼ ĥ21;
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@bX @ĥi0
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which, upon substitution of the O(1) solution, becomes
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For liquid 1, the form of the equation is
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For liquid 2, the form of Eq. (51) becomes

@2ĥ22

@Z2 þ
3l� þ 4h�

3c�T h� � 6h�
1
Re

1

Cþ bX @c11

@bX ¼ 0; ð54Þ

which is integrated from Z ¼ 0 to Z ¼ h� to give

@ĥ22
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where both c11 and c�11 are constants. They can be determined by
matching the core solution with solutions in the end regions.
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which, upon substitution of the O(1) and OðeÞ solution, becomes
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where a� ¼ a2=a1 is the ratio of thermal diffusivity of both liquids.
These two equations are integrated twice respect to Z to give
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ĥ13 ¼
3l� þ 4h�

3c�T h� � 6h�
c2

11

Re
Pr

ðCþ bXÞ2 Z4

24
þ Z3

9
þ Z2

12

 !
þH13ðbXÞ; ð65aÞ

ĥ23 ¼
3l� þ4h�

3c�T h� �6h�
1
a�

c2
11

Re
Pr

ðCþ bXÞ2 AZ4

24
þBZ3

6
þ Z2

12

 !
þH23ðbXÞ; ð65bÞ

where H13ðbXÞ and H23ðbXÞ are undetermined functions of bX . Using
the boundary condition at Z ¼ 0 : ĥ13 ¼ ĥ23 yields

H13ðbXÞ ¼ H23ðbXÞ; ð66Þ

which can only be determined by examining the energy equation at
Oðe5Þ. Upon substitution of known values, the energy equation at
Oðe5Þ is given by

@2ĥ15

@Z2 þ
4M

ðCþ bXÞ4 Z4

24
þZ3

9
þ Z2

12

 !
þ@

2H13

@bX2
þ 1

Cþ bX @H13

@bX ¼0; ð67aÞ

@2ĥ25

@Z2 þ
1
a�

4M

ðCþ bXÞ4 AZ4

24
þBZ3

6
þ Z2

12

 !
þ@

2H23

@bX 2
þ 1

Cþ bX @H23

@bX ¼ 0; ð67bÞ

where M ¼ 3l�þ4h�

3c�T h��6h�
c2

11Pr
Re .

Integrating Eq. (67a) from Z ¼ �1 to Z ¼ 0, and Eq. (67b) from
Z ¼ 0 to Z ¼ h�, we have

@2H13

@bX2
þ 1

Cþ bX @H13

@bX ¼ � M
30

1

ðCþ bXÞ4 � @ĥ15

@Z

�����
Z¼0

; ð68aÞ

@2H23

@bX2
þ 1

Cþ bX @H23

@bX ¼ �Mð3Ah�4 þ 15Bh�3 þ 10h�2Þ
90

1
a�

� 1

ðCþ bXÞ4 þ 1
h�
@ĥ25

@Z

�����
Z¼0

: ð68bÞ

Combining Eqs. (68a) and (68b) and using the boundary condi-
tion at Z ¼ 0 : @ĥ15=@Z ¼ k�@ĥ25=@Z yields

@2H13

@bX2
þ 1

Cþ bX @H13

@bX ¼� M

ðCþ x̂Þ4

� k�h�

k�h� þ1
1
a�

3Ah�
4
þ15Bh�

3
þ10h�

2

90
þ 1

k�h� þ1
1

30

 !
; ð69Þ

which can be integrated twice with respect to bX to give

H13 ¼a03 lnðCþ bXÞ þ d3 �
1

120
1

k�h� þ 1
þ

�
3Ah�4 þ 15Bh�3 þ 10h�2

360
k�h�

k�h� þ 1
1
a�

!
M

ðCþ bXÞ2 ; ð70Þ

where a03 and d3 are constants, which must be determined by
matching with the end region solutions.
4. End region solution

In the cold end region near the inner cylinder, h; w and x are
denoted by �h; �w and �x, while in the hot end region, ~h; ~w and ~x
are used. Since the streamlines in the core are parallel at the lead-
ing order, they must eventually enter into the end regions. Hence �w
and ~w must be rescaled as �w ¼ ew and ~w ¼ ew. The governing equa-
tions in the cold end are Eqs. (19)–(21) while the governing equa-
tions in the hot end are obtained from them by performing the
transformation n ¼ 1=e� X.

In order to match the end region solutions with the solutions in
the core region, the flow variables are expanded as
ð�hi; �wi; �xi; ~hi; ~wi; ~xiÞ ¼
XN

j¼0

ejð�hij; �wij; �xij; ~hij; ~wij; ~xijÞ: ð71Þ

The matching conditions between the core and end region solu-
tions are given by

lim
x̂!0
ðĥ; ŵ; x̂Þcore () lim

x!1
ð�h; �w; �xÞcold; ð72Þ

lim
x̂!1
ðĥ; ŵ; x̂Þcore () lim

n!1
ð~h; ~w; ~xÞhot; ð73Þ

where the symbol () is used to indicate the matching conditions
applied in the limit as e! 0.

At O(1), the governing equations in the cold end region are

@2 �xi0

@X2 þ
@2 �xi0

@Z2 ¼ 0; ð74Þ

� 1
C

@2 �wi0

@X2 þ
@2 �wi0

@Z2

 !
¼ �xi0; ð75Þ

@2�hi0

@X2 þ
@2�hi0

@Z2 ¼ 0: ð76Þ

When Eq. (76) is combined with the appropriate boundary con-
ditions, it is seen that �hi0 ¼ 0.

In the hot end region, the governing equations are the same as
Eqs. (74)–(76) except that C is replaced by Cþ 1 and X is re-
placed by n. Applying the appropriate boundary conditions, the
leading order temperature field in the hot end region is given
by ~hi0 ¼ 1.

In order to apply conditions (72) and (73), ĥi0 is expanded in
terms of the end region variables resulting in

3l� þ4h�

3c�T h� �6h�
c11

Re
lnCþ 3l� þ4h�

3c�T h� �6h�
c11

Re
eX
C
�1

2
eX
C

� �2

þ���
" #

þc�11¼0; ð77Þ

3l� þ 4h�

3c�T h� � 6h�
c11

Re
lnðCþ 1Þ þ 3l� þ 4h�

3c�T h� � 6h�
c11

Re

� � en
1þ C

� 1
2

en
1þ C

� �2

� � � �
" #

þ c�11 ¼ 1; ð78Þ

which gives

c11 ¼
3c�T h� � 6h�

3l� þ 4h�
Re

ln½ðCþ 1Þ=C� ; ð79aÞ

c�11 ¼
ln C

ln½C=ð1þ CÞ� : ð79bÞ

The mismatch which occurs when to match at this order has
to be accounted for when to match the solutions at higher order.

At OðeÞ the energy equation in the cold end region is simplified
as

@2�h11

@X2 þ
@2�h11

@Z2 ¼ 0; ð80aÞ

@2�h21

@X2 þ
@2�h21

@Z2 ¼ 0: ð80bÞ

Integrating Eq. (80a) from Z ¼ �1 to Z ¼ 0 and Eq. (80b) from
Z ¼ 0 to Z ¼ h�, we haveZ 0

�1

@2�h11

@X2 dZ þ @
�h11

@Z

����
Z¼0
¼ 0; ð81aÞ

Z h�

0

@2�h21

@X2 dZ � @
�h21

@Z

����
Z¼0
¼ 0: ð81bÞ

Combining Eqs. (81a) and (81b) and using the boundary condi-
tion at Z ¼ 0 : @�h11=@Z ¼ k�@�h21=@Z yields
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Z 0

�1

@2�h11

@X2 dZ þ k�
Z h�

0

@2�h21

@X2 dZ ¼ 0: ð82Þ

Integrating this twice with respect to X, and noting that �hi1 ¼ 0
at X ¼ 0 givesZ 0

�1

�h11dZ þ k�
Z h�

0

�h21dZ ¼ a1X; ð83Þ

where a1 is a constant of integration. This equation is valid every-
where in the cold end, and in particular, it is valid in the limit when
the cold end approaches the core. According to the matching condi-
tion (72)

�hi1 ()
3l� þ 4h�

3c�T h� � 6h�
c11

Re
X
C
þ 3l� þ 4h�

3c�T h� � 6h�
c12
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eX
C
� 1

2
eX
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� �2

þ � � �
" #

þ c�12; ð84Þ

where the first term is the result of the mismatch at the leading or-
der. Substituting this expansion into Eq. (83) and retaining only the
leading order terms gives

ðk�h� þ1Þ 3l� þ4h�

3c�T h� �6h�
c11

Re
X
C
þ 3l� þ4h�

3c�T h� �6h�
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Re
lnCþ c�12

� �
¼ a1X: ð85Þ

Repeating the above analysis in the hot end region, we have

ðk�h�þ1Þ � 3l�þ4h�

3c�T h��6h�
c11

Re
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Cþ1
þ 3l�þ4h�

3c�T h��6h�
c12

Re
lnðCþ1Þþc�12

� �
¼a2n; ð86Þ

where a2 is an undetermined constant. Combining Eqs. (85) and
(86) we have

a1 ¼
3l� þ 4h�

3c�T h� � 6h�
c11

Re
k�h� þ 1

C
; ð87Þ

a2 ¼ �
3l� þ 4h�

3c�T h� � 6h�
c11

Re
k�h� þ 1
Cþ 1

; ð88Þ

c12 ¼ c�12 ¼ 0: ð89Þ

At Oðe2Þ the energy equations in the cold end region can be
written as

� Pr
Cþ eX

@�w10
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; ð90aÞ

� Pr
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1
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; ð90bÞ

by first substituting for the known values of �hi0 and �hi1.
Integrating Eq. (90a) from Z ¼ �1 to Z ¼ 0 and Eq. (90b) from

Z ¼ 0 to Z ¼ h� yieldsZ 0

�1

@2�h12

@X2 dZ þ @
�h12

@Z

����
Z¼0
¼ � 3l� þ 4h�
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; ð91aÞ

Z h�

0

@2�h22

@X2 dZ � @
�h22

@Z

����
Z¼0
¼ � 3l� þ 4h�
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C
1

Cþ eX
: ð91bÞ

Combining Eqs. (91a) and (91b) and using the boundary condi-
tion at Z ¼ 0 : @�h12=@Z ¼ k�@�h22=@Z yieldsZ 0

�1
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: ð92Þ

Integrating Eq. (92) twice with respect to X and applying the
appropriate boundary conditions yields
Z 0

�1

�h12dZþk�
Z h�
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where a3 is a constant of integration. The matching condition for �hi2

is
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þ c�13; ð94Þ

where the first term is the result of the mismatch at the leading or-
der. Applying this matching condition with Eq. (93) yields
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When the same analysis is repeated in the hot end region, the
corresponding result is
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Combining the above two equations gives

c13 ¼ c�13 ¼ a3 ¼ a4 ¼ 0: ð97Þ

At Oðe3Þ the energy equation in the cold end region can be written
as
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by first substituting for the known values of �h10; �h11 and �h12.
Integrating Eq. (98a) from Z ¼ �1 to Z ¼ 0 and Eq. (98b) from

Z ¼ 0 to Z ¼ h� and applying the appropriate boundary conditions,
we have
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Combining Eqs. (99a) and (99b) and using the boundary condi-
tion at Z ¼ 0 : @�h13=@Z ¼ k�@�h23=@Z yieldsZ 0
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Integrating Eq. (100) twice with respect to X and applying the
appropriate boundary conditions yields
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where b3 is a constant of integration. The matching condition for �hi3

is
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where the first terms are the result of the mismatch at the leading
order. Applying this matching condition with Eq. (101) yields
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When the same analysis is repeated in the hot end region, the
corresponding result is

ðk�h� þ 1Þ 1
6

3l� þ 4h�

3c�T h� � 6h�
c11

Re
n3

ðCþ 1Þ3
þ a03 lnðCþ 1Þ þ d3

 !

¼ k�h� þ 1
6

3l� þ 4h�

3c�T h� � 6h�
c11

Re
n3

ðCþ 1Þ3
þ b4n: ð105Þ

Combining the above two equations gives

a03 ¼ d3 ¼ b3 ¼ b4 ¼ 0: ð106Þ
5. Asymptotic solution

Substituting Eqs. (39), (44), (45), (58), (59), (62), (65) and (70)
into Eq. (28) and noticing Eqs. (66), (79), (89), (97) and (106), we
can obtain the asymptotic solutions of thermocapillary convection
in the core region as follows
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Applying the equation U ¼ � 1
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If C!1, we have
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In this case, thin annular pool approaches to thin two-dimensional
slot. Therefore, Eqs. (113)–(116) are the same as the results ob-
tained by Doi and Koster [12].

It is found that the value of U1 in Eq. (111) becomes zero at
c�T ¼ 2, therefore, the fluid motion halts in the lower liquid layer.
This is a very attractive feature of the thermocapillary convection
in two immiscible liquid layers. At same time, we find other two
conditions to stop fluid motion in the lower liquid layer, which
are l� ! 1 and h� ! 0. The same situations are also found in
two-dimensional slot by Doi and Koster [12].
6. Numerical experiments and comparison

Numerical experiments are carried out to compare simulation
results with the asymptotic solution of the steady two-dimen-
sional thermocapillary convection. The B2O3=GaAs system is used
for both the numerical simulation and the asymptotic solution.
The fundamental equations are discretized by the finite-difference
method. The modified central approximation is applied to the dif-
fusion terms while the QUICK scheme is used for the convective
terms. The SIMPLEC algorithm is adopted to correct simultaneously
the pressure and the velocities. In this study, nonuniform staggered
grid of 120r � 60z is chosen for all cases. The validation of the code
for the thermocapillary flow simulation was performed in our pre-
vious works [27], and there is no need to repeat here. Re ¼ 106 and
107; C ¼ 0:25; e ¼ 0:05 and 0.1, h� ¼ 0:5; 1:0 and 2.0 are used in
this work and the thermophysical properties of B2O3 and GaAs
are listed in Table 1.

Fig. 2 shows the radial distributions of radial velocity at the free
surface and the interface at e ¼ 0:05; h� ¼ 1 and Re ¼ 107. Any ra-
dial temperature difference produces a surface tension gradient
along the free surface and an interface tension gradient along the



Table 1
Physical properties.

Gallium arsenide
Density, q1 ¼ 5720 kg=m3

Dynamic viscosity, l1 ¼ 2:79� 10�3 kg=m s
Specific heat, cp1 ¼ 434 J=kg K
Thermal conductivity, k1 ¼ 17:8 W=m K
Interface tension temperature coefficient, cT;1 ¼ �1:2� 10�3 N=m K

Boron oxide
Density, q2 ¼ 1648 kg=m3

Dynamic viscosity, l2 ¼ 3:9 kg=m s
Specific heat, cp2 ¼ 1830 J=kg K
Thermal conductivity, k2 ¼ 2:0 W=m K
Surface tension temperature coefficient, cT;2 ¼ 3:57� 10�5 N=m K

Fig. 2. The radial distributions of radial velocity at the free surface and the interface
at Re ¼ 107; e ¼ 0:05 and h� ¼ 1:0. Solid line: asymptotic solution; dotted line:
simulation result.

Fig. 4. The radial distributions of radial velocity at the free surface and the interface
for the case of e ¼ 0:05 at Re ¼ 107 and h� ¼ 0:5. Solid line: asymptotic solution;
dotted line: simulation result.
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interface, and the thermocapillary effect induces the convective
motions in the two layers. In the present case, the thermocapillary
forces act in opposite directions at the free surface and the inter-
face surface. Thus there is a counterclockwise circulation in lower
liquid layer 1 and a clockwise circulation in the upper liquid layer
2. The free surface fluid flows from the cold wall toward the hot
wall, while the interface flow is from the hot wall toward the cold
wall. The maximum radial velocities at the free surface and the
interface both locate near the inner cylinder. For all case the tem-
perature distribution in the radial direction is almost independent
on the presence of the flow, which approaches the conductivity
temperature distribution at small thermocapillary Reynolds num-
ber. Fig. 3 gives vertical distributions of the radial velocity in the
Fig. 3. Distribution of radial velocity in the middle part as a function of Z for the
case of Re ¼ 107. Solid line: asymptotic solution; dotted line: simulation result.
middle part at Re ¼ 107; h� ¼ 1; e ¼ 0:05 and 0.1. For both cases,
the simulation results of the radial velocity are almost same as
the asymptotical solution. In the asymptotical solutions, the terms
of oðe3Þ are neglected. Therefore, the error between the asymptot-
ical solutions and the simulation results increases with the in-
crease of the aspect ratio e. It is found that the asymptotical
solutions are not suitable near the inner cylinder and outer cylin-
der, for the end effects are not considered in the present analysis.
Near the inner cylinder and outer cylinder, the flow structure
and temperature distribution can only be obtained by a numerical
method, as shown by Sen and Davis [25].

In order to estimate the effect of the thickness ratio of the two
layers, we also calculate the radial distributions of radial velocity at
the free surface and the interface for the cases of h� ¼ 0:5 and 2, as
shown in Figs. 4 and 5, respectively. It is found that the error be-
tween the asymptotical solutions and the simulation results in
the cases of h� ¼ 0:5 is smaller than that in the case of h� ¼ 2. At
Re ¼ 107, the asymptotical solutions at h� ¼ 2 is invalidity. It
means the range of validity of the asymptotical solutions decreases
gradually with the increase of the thickness ratio of the two layers.

7. Conclusions

Approximate solutions of thermocapillary convection under
microgravity condition in a differentially heated annular pool of
the two-layer system are obtained in the core region in the limit
as the aspect ratio goes to zero. And two-dimensional numerical
Fig. 5. The radial distributions of radial velocity at the free surface and the interface
for the case of e ¼ 0:05 at Re ¼ 106 and h� ¼ 2:0. Solid line: asymptotic solution;
dotted line: simulation result.
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simulation is also performed under the same conditions. The re-
sults show that the asymptotical solutions of the temperature
and the velocity in the core region have a good agreement with
the simulation results. The error between the asymptotical solu-
tions and the simulation results increases with the increase of
the aspect ratio and the thickness ratio of the two layers. However,
the asymptotical solutions are not suitable near the inner cylinder
and outer cylinder, for the end effects are not considered in the
present analysis.
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